Preparation, NMR spectra and reactivity of pentafluorophenyltetrafluorosilicates M^+ [$C_6F_5SiF_4$]^{- \Rightarrow} H.J. Frohn a,*, V.V. Bardin b ^a Fachgebiet Anorganische Chemie, Gerhard-Mercator-Universität Duisburg, Lotharstr. 1, D-47048 Duisburg, Germany ^b Institute of Organic Chemistry, 630090 Novosibirsk, Russia Received 10 April 1995 #### Abstract Pentafluorophenyltetrafluorosilicates M^+ [$C_6F_5SiF_4$]⁻ were obtained from pentafluorophenyltrifluorosilane $C_6F_5SiF_3$ and ionic fluorides MF (M = K, Cs, Me₄N) in anhydrous MeCN or diglyme. The reactivity of M^+ [$C_6F_5SiF_4$]⁻ toward electrophiles was studied. Keywords: Pentafluorophenyl; Fluorosilicate anion; Desilylation #### 1. Introduction Recently we reported a convenient procedure for the synthesis of C₆F₅SiF₃ (1) and studied its NMR spectra and reactivity toward electrophiles and nucleophiles [1]. It was assumed that reactions of aryltrifluorosilane 1 with "hard" nucleophiles (NaOEt, piperidine) proceeds via the intermediate formation of pentafluorophenylfluorosilicates, which contain five-coordinated silicon. Participation of pentafluorophenyltrimethylfluorosilicates as highly reactive intermediates in fluoride-catalyzed reactions of C₆F₅SiMe₃ with electrophiles was proposed earlier [2], but proof of their existence had not been obtained at this stage. However, preparations, structures, spectral properties and reactivities of fluorosilicates M^+ $[R_n SiF_{5-n}]^-$ and M_2^+ $[R_n SiF_{6-n}]^{2-}$ (n = 1 -3) were well documentated for the different types of hydrocarbons and, to a lesser extent, for partially fluorinated organyl groups R [3,4]. This paper deals with the syntheses, NMR spectra and reactivities of pentafluorophenyltetrafluorosilicates M^+ [$C_6F_5SiF_4$]⁻ ($M = [Me_4N]$, Cs and K). #### 2. Results and discussion # 2.1. Synthesis and reactivity of pentafluorophenyltetrafluorosilicates The general route to organylfluorosilicates consists of the interaction of the corresponding organylfluorosilane with a fluoride donor (alkali metal fluoride, ammonium fluoride, tetraalkylammoniumfluoride hydrate) in protic or aprotic solvents [3,4]. Reaction of HF-free pentafluorophenyltrifluorosilane with anhydrous [Mc₄N]F, KF or CsF in dry CH₃CN, CD₃CN-EtCN or diglyme gave the corresponding pentafluorophenyltetrafluorosilicates. $$C_6F_5SiF_3 + MF \longrightarrow M^+ [C_6F_5SiF_4]^-$$ $$1$$ $$(M = [Me_4N] 2, Cs 3 or K 4)$$ Fluorosilicates such as Cs^+ [$C_6F_5SiF_4$]⁻ and [Me_4N]⁺ [$C_6F_5SiF_4$]⁻ are white moisture-sensitive solids that are slightly soluble in polar aprotic solvents, whereas the potassium salt shows lower solubility. Suspensions and solutions of fluorosilicates 2 and 3 in MeCN are stable at room temperature at least for one day, but over longer periods pentafluorobenzene is formed. Decomposition of tetrafluorosilicate 2 in ^a Dedicated to Prof. Dr. Herbert Schumann on the occasion of his 60th birthday. ^{*} Corresponding author. diglyme proceeds more slowly, but also leads to pentafluorobenzene. In contrast to pentafluorophenyltrifluorosilane [1], pentafluorophenyltetrafluorosilicates $M^+[C_6F_5SiF_4]^-$ are highly reactive toward electrophiles. They react immediately with ethanol-D or water to form of deuteropentafluorobenzene or pentafluorobenzene: $$[Me_4N]^+[C_6F_5SiF_4]^- + EtOD \xrightarrow{MeCN} C_6F_5D$$ $$C_6F_5SiF_3 + MF \cdot nH_2O \xrightarrow{MeCN} C_6F_5H$$ where $M = [Et_4N]$ or $[Bu_4N]$. The apparent paradox of the fast carbon-silicon bond cleavage in $C_6F_5SiF_3$ with 40% HF_{aq} . [5] and the stability of this silane in anhydrous HF (AHF) [1] may now be rationalized within the framework of intermediate formation of fluorosilicate in aqueous HF (the more nucleophilic medium) and its protodesilylation. Bromine reacts immediately with aryltetrafluorosilicate 2 in diglyme at -10 °C to form bromopentafluorobenzene and SiF₄. The interaction of salt 2 with the less reactive ICN proceeds slowly and the formation of iodopentafluorobenzene indicates unambigously the electrophilic character of the desilylation. $$\begin{split} &\left[\mathsf{Me_4N}\right]^+ \left[\mathsf{C_6F_5SiF_4}\right]^- + \mathsf{Br_2} \\ &\xrightarrow{\mathsf{Diglyme}} \mathsf{C_6F_5Br} + \left[\mathsf{Me_4N}\right]^+ \mathsf{Br}^- + \mathsf{SiF_4} \\ &\left[\mathsf{Me_4N}\right]^+ \left[\mathsf{C_6F_5SiF_4}\right]^- + \mathsf{ICN} \\ &\xrightarrow{\mathsf{Diglyme}} \mathsf{C_6F_5I} + \left[\mathsf{Me_4N}\right]^+ \left[\mathsf{CN}\right]^- + \mathsf{SiF_4} \end{split}$$ It was known that silane 1 is inert to IF_5 in AHF, $CH_2Cl_2[1]$ or chlorofluorocarbons [6] but reacts slowly under basic conditions (MeCN, pyridine) to yield $C_6F_5IF_4$ [6]. However, in dichloromethane the reaction of pentafluorophenyltetrafluorosilicate 3 with IF_5 to $C_6F_5IF_4$ was completed within a few minutes. $$[Me_4N]^+ [C_6F_5SiF_4]^- + IF_5$$ $$\xrightarrow{CH_2Cl_2} C_6F_5IF_4 + [Me_4N]^+ [SiF_5]^-$$ The role of pyridine in the formation of $C_6F_5IF_4$ from $C_6F_5SiF_3$ and IF_5 [6] now may be explained by complex formation of the *N*-base with trifluorosilane 1 followed by desilylation of the complex with IF_5 . The reaction between Cs^+ [$C_6F_5SiF_4$]⁻ and xenon difluoride in acetonitrile at room temperature proceeded slowly. Monitoring of the reaction mixture by ¹⁹ F NMR spectrometry indicated the formation of pentafluorobenzene and decafluorobiphenyl (5.3:1, mol) or deuteropentafluorobenzene and $C_{12}F_{10}$ (3.1:1, mol) in CD_3CN . No pentafluorophenylxenon(II) cation was observed. However, the latter species is known to react quickly with fluoride ions in CH_3CN or in CD_3CN at -30 to -10 °C to give C_6F_5H (C_6F_5D) and $C_{12}F_{10}$ in the same ratio [7]. Therefore, the intermediate formation of the $[C_6F_5Xe]^+$ cation from $[C_6F_5SiF_4]^-$ and XeF_2 (slow step) and its fast conversion into C_6F_5H and $C_{12}F_{10}$ cannot be excluded. $$Cs^{+}[C_{6}F_{5}SiF_{4}]^{-} + XeF_{2}$$ $$\xrightarrow{CH_{3}CN} C_{6}F_{5}H + C_{12}F_{10} + Xe^{\circ} + Cs^{+}[SiF_{5}]^{-}$$ A possible reaction path is: $$[C_{6}F_{5}SiF_{4}]^{-} + XeF_{2} \xrightarrow{CH_{3}CN} [C_{6}F_{5}Xe]^{+} + F^{-} + [SiF_{5}]^{-}$$ $$\xrightarrow{fast} C_{6}F_{5}H + C_{12}F_{10} + Xe^{\circ} + [SiF_{5}]^{-}$$ Previously the pentafluorophenylation of some carbon electrophiles with $C_6F_5SiMe_3$ in the presence of CsF was assumed to proceed via the intermediate generation of the fluorosilicate anion $[C_6F_5SiMe_3F]^-$ [2c]. We now show that the individual salt 3 has reacted with pentafluoropyridine to give perfluoro-4-phenylpyridine and pentafluorobenzene (co-product) $$Cs^{+}[C_{6}F_{5}SiF_{4}]^{-} + C_{5}F_{5}N$$ $$\xrightarrow{CH_{3}CN} 4 - C_{6}F_{5}C_{5}F_{4}N + C_{6}F_{5}H + Cs^{+}[SiF_{5}]^{-}$$ Further proof of the strong nucleophilic arylating ability of pentafluorophenyltetrafluorosilicate is given by the interaction of salt 3 with nitrosonium tetrafluoroborate. It is known that the cation [NO]⁺ is a very weak electrophile and reacts only with electron-rich aromatic compounds like anilines, anisoles, polymethylbenzenes, etc. to yield nitrosoarenes [8]. Nevertheless, nitrosopentafluorobenzene was obtained from pentafluorophenyltetrafluorosilicate and [NO]⁺ [BF₄]⁻. $$Cs^{+}[C_{6}F_{5}SiF_{4}]^{-} + [NO]^{+}[BF_{4}]^{-}$$ $$\xrightarrow{MeCN} C_{6}F_{5}NO + Cs^{+}[BF_{4}]^{-} + SiF_{4}$$ The powerful electrophile nitronium tetrafluoroborate would be expected to give nitropentafluorobenzene. Indeed, this compound was formed in the reaction of cesium pentafluorophenyltetrafluorosilicate with $[NO_2]^+$ $[BF_4]^-$ in acetonitrile. Surprisingly, the main product was pentafluorophenyltrifluorosilane. This means that the $[NO_2]^+$ cation acts mainly as a fluoride acceptor with respect to the $[C_6F_5SiF_4]^-$ anion rather than as an electrophile. $$Cs^{+}[C_{6}F_{5}SiF_{4}]^{-} + [NO_{2}]^{+}[BF_{4}]^{-}$$ $$\xrightarrow{MeCN} C_{6}F_{5}SiF_{3} + \langle NO_{2}F \rangle + Cs^{+}[BF_{4}]^{-}$$ $$Cs^{+}[C_{6}F_{5}SiF_{4}]^{-} + [NO_{2}]^{+}[BF_{4}]^{-}$$ $$\longrightarrow C_{6}F_{5}NO_{2} + SiF_{4} + Cs^{+}[BF_{4}]^{-}$$ The fluoride-donating ability of $[C_6F_5SiF_4]^-$ may be demonstrated by the reaction with boron trifluoride antris(pentafluorophenyl)borane where the silane C_6F_5SiF was formed in additon to the corresponding fluorobo rates. Pentafluorophenylation of the boranes did not occur. The mechanism of desilylation of pentafluorophenyltetrafluorosilicates can be described as direct attachment of the electrophilic species to the C(1) atom of $[C_6F_5SiF_4]^-$ or by dissociation of the fluorosilicate anion into the $[C_6F_5^-]$ anion and SiF_4 . The second path seems more probable. It allows us to explain the formation of pentafluorobenzene in reactions with weak electrophiles in acetonitrile or diglyme (C-H acids). Moreover, the interaction of salt 3 with the stronger C-H acid CH_3SO_2F in diglyme led only to pentafluorobenzene. $$C_{6}F_{5}SiF_{3} + F^{-} \longrightarrow [C_{6}F_{5}SiF_{4}]^{-}$$ $$\longrightarrow [C_{6}F_{5}^{-}] + SiF_{4}$$ $$[C_{6}F_{5}^{-}] + E-Y \longrightarrow C_{6}F_{5}E + Y^{-}$$ $$(E = \text{electrophilic center})$$ $$[C_{6}F_{5}^{-}] + H-B \longrightarrow C_{6}F_{5}H + B^{-} (B = \text{base})$$ # 2.2. NMR spectra of pentafluorophenyltetrafluorosilicates The NMR spectra of organyltetrafluorosilicates [RSiF₄]⁻ have been thoroughly investigated [3]. For instance, addition of F^- to $C_6H_5SiF_3$ is accompanied by a high-frequency shift of the ¹⁹F resonance and an opposite shift of the ²⁹Si resonance (Table 1). Similar changes were observed for the couples BzSiF₃-[BzSiF₄] and CF₃SiF₃-[CF₃SiF₄]. Coordination of the fluoride anion at C₆F₅SiF₃ displayed analogous shifts of ¹⁹F and ²⁹Si resonances of the SiF fragment. In all cases the resonance of the SiF_4 group in $[C_6F_5SiF_4]^$ displayed a broad singlet and variation of temperature in the range -20 to +35 °C did not affect the position and structure of the C₆F₅ and SiF₄ signals. (The low solubility at low temperatures did not allow us to perform measurements at temperatures significantly lower than -25 °C.) A comparison of ¹⁹F NMR spectra of trifluorosilane 1 and tetrafluorosilicates 2 and 3 in the region of aromatically bonded fluorine atoms showed unambiguously a significant delocalization of negative charge at the pentafluorophenyl group in salts 2 and 3. Table 1 The ¹⁹F and ²⁹Si nuclear magnetic resonances of Si-F fragments in RSiF₃ and M⁺[RSiF₄]⁻ compounds | Compound | δ ⁽¹⁹ F) | ¹ J(F-Si) | $\delta(^{29}\text{Si})$ | ¹ J(Si-F) | Ref. | |----------------------------------------------------------------|----------------------------|----------------------|--------------------------|----------------------|------| | • | ppm | Hz | ppm | Hz | | | C ₆ H ₅ SiF ₃ | -143.0 | 266 | -72.9 | 268 | [11] | | $[C_6H_5SiF_4]^{-a}$ | -119.2 | 206 | | | [11] | | $[C_6H_5SiF_4]^{-b}$ | -114.3 | 209 | -125.9 | 210 | [11] | | C ₆ H ₅ CH ₂ SiF ₃ | -138.9 | 281 | -64.1 | 282 | [11] | | $[C_6H_5CH_2SiF_4]^{-c}$ | -117.3 | 215 | -116.4 | 218 | [11] | | CF ₃ SiF ₃ | -150.0 | 271 | | | [12] | | $[CF_3SiF_4]^-$ | -133.1 | | | | [12] | | C ₆ F ₅ SiF ₃ d | -132.8 | | | | [1] | | C ₆ F ₅ SiF ₃ f | -134.2 | 248 | -77.8 | 248 | [1] | | $Cs^{+}[C_{6}F_{5}SiF_{4}]^{-d}$ | -109.9 | | | | | | $[Me_4N]^+[C_6F_5SiF_4]^{-d}$ | -104.2 | | -131.0 | | | | $[Me_4N]^+[C_6F_5SiF_4]^{-e}$ | -104.2 | | | | | ^a At 35°C. $C_6F_5SiF_3$ (19 F, CD_2Cl_2) [1]: -124.82 (F2,6), -143.03 (F4), -159.04 (F3,5) ppm. $C_6F_5SiF_3$ (19 F, $CD_3CN-EtCN$) [1]: -125.93 (F2,6), -143.84 (F4), -159.52 (F3,5) ppm. Cs^+ [$C_6F_5SiF_4$]⁻ (19 F, CH_3CN): -129.9 (F2,6), -156.6 (F4), -162.6 (F3,5) ppm. [Me₄N]⁺ [$C_6F_5SiF_4$]⁻ (19 F, CH_3CN): -130.6 (F2,6), -158.8 (F4), -163.1 (F3,5) ppm. [Me₄N]⁺ [$C_6F_5SiF_4$]⁻ (19 F, diglyme): -129.2 (F2,6), -159.9 (F4), -164.2 (F3,5) ppm. The differences between the 19 F and 29 Si NMR spectra of $C_6F_5SiF_3$ in neutral (CD_2Cl_2) and basic $(CD_3CN-EtCN)$ solvents can be rationalized by formation of the neutral adduct $[C_6F_5SiF_3\cdot NCR]$. ### 3. Experimental details The 1 H and 19 F NMR spectra were recorded on Varian EM 360 L (1 H at 60.0 MHz and 19 F at 56.4 MHz), Bruker WP 80 SY (19 F at 75.4 MHz), WP 200 SY (14 H at 200.0 MHz, 19 F at 188.3 MHz) and AM 400 (29 Si at 79.5 MHz) spectrometers (with TMS and C_6F_6 as internal references). The chemical shifts 19 F were assigned to CFCl₃ using δ (F) = -162.9 ppm for C_6F_6 . Pentafluorophenyltrifluorosilane [1] was treated with calcinated NaF before usc. Bromine (Merck), [NO]⁺ [BF₄]⁻, [NO₂]⁺ [BF₄]⁻, [Et₄N]⁺ F⁻·2 H₂O (Fluka), [Bu₄N]⁺ F⁻·3 H₂O (Riedel de Haen) were used without further purification. Methods for the preparation of anhydrous [Me₄N]⁺ F⁻, CsF and the purification of MeCN are given in Ref. [7]. Iodine pentafluoride and CH₃SO₂F were distilled before use and diglyme was distilled under vacuum over CaH₂. All manipulations ^b At -18.2°C (¹⁹F), -58.2°C (²⁹Si). ^c At -98°C. ^d In CH₃CN or CD₃CN-EtCN. e In diglyme. f In CD₂Cl₂. with $C_6F_5SiF_3$ and M^+ [$C_6F_5SiF_4$] were carried out in FEP tube-reactors under dry argon. # 3.1. Preparation of $[Me_4N]^+ [C_6F_5SiF_4]^- 2$ A solution of $C_6F_5SiF_3$ (69 mg, 0.27 mmol) in MeCN (0.1 ml) was added to a solution of $[Me_4N]^+$ F^- (14 mg, 0.15 mmol) in MeCN (0.4 ml) at -30 °C. The resulting suspension was shaken at room temperature for 10–15 min, the volatile products were removed under high vacuum and the residue was washed with dichloromethane (2 × 0.6 ml). The solid was dried in vacuum at room temperature for 30 min to yield salt 2 (38 mg, 76%). Found: C 34.1, H 3.68, F 49.0, N 3.98. $C_{10}H_{12}F_9NSi$. Required: C 34.8, H 3.48, F 49.6, N 4.06. # 3.2. Preparation of Cs^+ $[C_6F_5SiF_4]^-$ 3 and K^+ $[C_6F_5SiF_4]^-$ 4 Salts 3 and 4 were prepared in a similar manner from KF (spray-dried) or CsF (1 equiv.) and $C_6F_5SiF_3$ (1.2–1.4 equiv.) in 67%–72% yield. Pentafluorobenzene was formed as by-product. Cs⁺ [$C_6F_5SiF_4$]⁻. Found: C 17.3, F 42.9. C_6F_9CsSi . Required: C 17.8, F 42.3. K⁺ [$C_6F_5SiF_4$]⁻. Found: C 23.2, F 56.0. C_6F_9KSi . Required: C 23.2, F 55.2. # 3.3. Reactions of M^+ $[C_6F_5SiF_4]^-$ #### With alcohol and water (A) Deuteropentafluorobenzene was obtained by addition of EtOD (0.5 mmol) to a suspension of tetrafluorosilicate 2 (0.3 mmol) in $CD_3CN-C_2H_5CN$ (0.7 ml). (B) A solution of $C_6F_5SiF_3$ (1 equiv.) in MeCN was added dropwise to the solution of $[Et_4N]^+$ $F^- \cdot 2$ H_2O or $[Bu_4N]^+$ $F^- \cdot 3$ H_2O (1–1.5 equiv.) in MeCN at room temperature. Within a few minutes trifluorosilane 1 had been converted into pentafluorobenzene (quantitative yield, ¹⁹ F NMR spectra). #### With bromine A suspension of $[Me_4N]^+$ $[C_6F_5SiF_4]^-$ in diglyme (0.2 ml) derived from $C_6F_5SiF_3$ (76 mg, 0.30 mmol) and $[Me_4N]^+$ F^- (29 mg, 0.31 mmol) was treated with bromine (100 mg, 0.63 mmol) at 10 °C. Immediately SiF_4 was evolved and after 3–5 min salt 2 was converted completely into bromopentafluorobenzene. #### With ICN A suspension of $[Me_4N]^+$ $[C_6F_5SiF_4]^-$ in diglyme (0.2 ml) derived from $C_6F_5SiF_3$ (99 mg, 0.39 mmol) and $[Me_4N]^+$ F⁻ (47 mg, 0.50 mmol) was treated with a solution of ICN (62 mg, 0.41 mmol) in diglyme (0.2 ml) at -30 °C. The resulting suspension was kept at room temperature until the 19 F resonances of salt 2 had disappeared (12 h). The precipitate was removed after centrifugation to give a solution of C_6F_5I (quantitative conversion). #### With IF, A solution of IF₅ (28 mg, 0.13 mmol) in CH_2Cl_2 (0.1 ml) was added to a suspension of salt **2** (41 mg, 0.12 mmol) in CH_2Cl_2 (0.2 ml) at -30 °C. The reaction mixture was shaken at room temperature for 10-15 min to complete the formation of $C_6F_5IF_4$ (quantitative yield, ¹⁹F NMR). # With XeF₂ A solution of $C_6F_5SiF_3$ (60 mg, 0.24 mmol) in MeCN (0.2 ml) was added to the suspension of XeF_2 (47 mg, 0.28 mmol) and CsF (59 mg, 0.39 mmol) in MeCN (0.2 ml) cooled to -30 °C. The ¹⁹F NMR spectrum displayed the presence of Cs^+ [$C_6F_5SiF_4$]⁻, XeF_2 , C_6F_5H and $C_{12}F_{10}$ (traces). After 3–4 d salt 3 was converted completely into C_6F_5H and $C_{12}F_{10}$ (5.3:1, mol). In CD_3CN deuteropentafluorobenzene and decafluorobiphenyl were formed (3.1:1, mol). Traces of unreacted XeF_2 were observed in both cases (¹⁹F NMR). # With [NO] + [BF₄] - A suspension of Cs^+ [$C_6F_5SiF_4$] in MeCN (0.5 ml) derived from $C_6F_5SiF_3$ (100 mg, 0.40 mmol) and CsF (67 mg, 0.44 mmol) was treated with solid [NO]⁺ [BF₄] (67 mg, 0.57 mmol). The blue suspension was shaken at room temperature for 3 h until the ¹⁹F NMR signals of salt 3 had disappeared. Nitrosopentafluorobenzene was obtained (quantitative conversion). # With $[NO_2]^+$ $[BF_4]^-$ A suspension of $Cs^+[C_6F_5SiF_4]^-$ in MeCN (0.2 ml) derived from $C_6F_5SiF_3$ (56 mg, 0.22 mmol) and CsF (45 mg, 0.30 mmol) was treated with solid $[NO_2]^+[BF_4]^-$ (40 mg, 0.30 mmol) at -20 °C. The reaction mixture was kept at room temperature for 1 h and delivered nitropentafluorobenzene and pentafluorophenyltrifluorosilane (1:2, mol; ^{19}F NMR). # With BF₃ · MeCN A suspension of $[Me_4N]^+$ $[C_6F_5SiF_4]^-$ in MeCN (0.3 ml) derived from $C_6F_5SiF_3$ (50 mg, 0.20 mmol) and $[Me_4N]^+$ F^- (24 mg, 0.26 mmol) was treated with a solution of $BF_3 \cdot MeCN$ (22 mg, 0.20 mmol) in MeCN (0.1 ml) at -15 °C. After a few minutes the obtained white precipitate was separated and the solution con tained $C_6F_5SiF_3$ (quantitative yield) along with mino amounts of $[Me_4N]^+$ $[BF_4]^-$ (¹⁹ F NMR). #### With $B(C_6F_5)_3$ A suspension of $[Me_4N]^+$ $[C_6F_5SiF_4]^-$ (38 mg, 0.1 mmol) in CH_2Cl_2 (0.3 ml) was treated with a solution of $B(C_6F_5)_3$ (66 mg, 0.13 mmol) in CH_2Cl_2 (0.1 ml). After few minutes $C_6F_5SiF_3$ and $[Me_4N]^+$ $[B(C_6F_5)_3F]^-$ [9] were formed (quantitative yield, ¹⁹F NMR). ### With pentafluoropyridine A suspension of Cs^+ [$C_6F_5SiF_4$] in MeCN (0.1 ml) derived from $C_6F_5SiF_3$ (82 mg, 0.33 mmol) and CsF (53 mg, 0.34 mmol) was treated with a solution of pentafluoropyridine (62 mg, 0.37 mmol) in MeCN (0.4 ml) under stirring at room temperature and kept at 60–65 °C for 2 h and at room temperature overnight. The volatile products were distilled off in vacuum. The white solid was extracted with CH_2Cl_2 and the solvent removed in vacuum to yield perfluoro-4-phenylpyridine (34 mg, 33%) [10]. The distillate contained pentafluorobenzene (37% yield) and pentafluoropyridine in excess. # With CH₃SO₂F A suspension of Cs⁺ $[C_6F_5SiF_4]^-$ (32 mg, 0.79 mmol) and CH₃SO₂F (98 mg, 1.0 mmol) in diglyme (0.2 ml) was stirred at 50 °C for 3 h. Pentafluorobenzene (95%) was obtained (¹⁹F NMR). #### Acknowledgments The authors gratefully acknowledge the Fonds der Chemischen Industrie for finacial support and Hoechst AG for the contribution of chemicals. #### References - [1] H.J. Frohn, A. Klose, A. Lewin and V.V. Bardin, *J. Organomet. Chem.*, submitted for publication. - [2] (a) N. Ishikawa and K. Isobe, Chem. Lett., (1972) 435; (b) V.V. Bardin, I.V. Stennikova and G.G. Furin, Zh. Obshch. Khim., 58 (1988) 812; (c) V.V. Bardin, G.G. Furin and I.V. Stennikova, The 2nd Soviet-West German Symp. on Fluorine Chemistry, Novosibirsk (USSR), 20-22 Sept. 1988, p. 37. - [3] (a) F. Klanberg and E.L. Muetterties, Inorg. Chem., 7 (1968) 155; (b) D. Schomburg and R. Krebs, Inorg. Chem., 23 (1984) 1378; (c) R. Damrauer and S.D. Danahey, Organometallics, 5 (1986) 1490; (d) J.J. Harland, J.S. Payne, R.O. Day and R.R. Holmes, Inorg. Chem., 26 (1987) 760; (e) R.J.P. Corriu, J. Organomet. Chem., 400 (1990) 81; (f) K. Tamao, T. Hayashi and Y. Ito, Organometallics, 11 (1992) 2099; (g) C. Chuit, R.J.P. Corriu, C. Reye and J.C. Young, Chem. Rev., 93 (1993) 1371. - [4] R. Müller, Z. Chemie, 24 (1984) 41. - [5] P.L. Timms, D.D. Stump, R.A. Kent and J.L. Margrave, J. Am. Chem. Soc., 88 (1966) 940. - [6] H.J. Frohn, Chem. Zeit., 108 (1984) 146. - [7] H.J. Frohn, A. Klose, V.V. Bardin, A.I. Kruppa and T.V. Leshina, J. Fluorine Chem., 70 (1995) 147. - [8] E. Borsch and J.K. Kochi, J. Org. Chem., 59 (1994) 5573. - [9] H.J. Frohn, A. Klose and G. Henkel, Angew. Chem., 105 (1993) 114. - [10] R.F. Banks, M.G. Barlow, R.N. Haszeldine and E. Phillips, J. Chem. Soc. C, (1971) 1957. - [11] S.E. Johnson, R.O. Day and R.R. Holmes, *Inorg. Chem.*, 28 (1989) 3182. - [12] H. Beckers, H. Bürger and R. Eujen, Z. Anorg. Allg. Chem., 563 (1988) 38.